Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording
نویسندگان
چکیده
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in AtT-20 pituitary cells. Na+-Ca++ exchange was inhibited by substitution of tetraethylammonium (TEA+) or tetramethylammonium (TMA+) for extracellular Na+. Control experiments demonstrated that substitution of TEA+ for Na+ did not produce its effects via a direct interaction with Ca++-dependent Cl- channels or via blockade of Na+-H+ exchange. When studied with standard whole cell methods, Ca++ and Ca++-dependent Cl- currents ran down within 5-20 min. Rundown was accelerated by inhibition of Na+-Ca++ exchange. In contrast, the amplitude of both Ca++ and Ca++-dependent Cl- currents remained stable for 30-150 min when the perforated patch method was used. Inhibition of Na+-Ca++ exchange within the first 30 min of perforated patch recording did not cause rundown. The rate of Ca++-dependent Cl- current deactivation also remained stable for up to 70 min in perforated patch experiments, which suggests that endogenous Ca++ buffering mechanisms remained stable. The duration of Ca++-dependent Cl- currents was positively correlated with the amount of Ca++ influx through voltage-gated Ca++ channels, and was prolonged by inhibition of Na+-Ca++ exchange. The influence of Na+-Ca++ exchange on Cl- currents was greater for larger currents, which were produced by greater influx of Ca++. Regardless of Ca++ influx, however, the prolongation of Cl- tail currents that resulted from inhibition of Na+-Ca++ exchange was modest. Tail currents were prolonged within tens to hundreds of milliseconds of switching from Na+- to TEA+-containing bath solutions. After inhibition of Na+-Ca++ exchange, tail current decay kinetics remained complex. These data strongly suggest that in the intact cell, Na+-Ca++ exchange plays a direct but nonexclusive role in limiting the duration of Ca++-dependent membrane currents. In addition, these studies suggest that the perforated patch technique is a useful method for studying the regulation of functionally relevant Ca++ transients near the cytoplasmic surface of the plasma membrane.
منابع مشابه
Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording
While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...
متن کاملModification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa
There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...
متن کاملAlpha-adrenergic stimulation activates a calcium-sensitive chloride current in brown fat cells
The first response of brown adipocytes to adrenergic stimulation is a rapid depolarizing conductance increase mediated by alpha-adrenergic receptors. We used patch recording techniques on cultured brown fat cells from neonatal rats to characterize this conductance. Measurements in perforated patch clamped cells showed that fast depolarizing responses were frequent in cells maintained in culture...
متن کاملThe calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes.
The dihydropyridine calcium channel blocker, nitrendipine, was studied for its effects on the sodium current of single cultured ventricular cells from neonatal rats. The patch-clamp method of recording whole cell currents was used, and sodium currents were isolated by suppressing potassium and calcium currents. Potassium currents were blocked by replacing potassium with cesium in the internal a...
متن کاملThe effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa
Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 94 شماره
صفحات -
تاریخ انتشار 1989